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Abstract 

A critical survey is given of the operations necessary to 
evaluate the moments of the probability density 
function P(R2). The failure of existing theories to give 
a(R2) is traced to the fact that averaging over all 
reflections is only equivalent to averaging over the set 
of coordinates of a model for an infinite data set. With 
the help of conditional probabilities the difficulties are 
overcome and formulas are derived for the first and 
second moments as a function of the size of the model. 
The formulas are valid in space group P1 for two 
extreme cases, viz a completely incorrect and a 
completely correct model. Incorporation of observed 
intensities enables one to obtain accurate a priori 
estimates of (R2) and o'(R2). The theory agrees very 
well with simulated experiments. It is demonstrated that 
R 2 and R~ have equal resolving power. 

1. Introduction: the need for a new theory 

In automated crystal structure analyses one can 
effectively use residual functions, such as R 2 and R~, as 
discriminator functions (Lenstra, 1974; Van de 
Mieroop, 1979) to decide upon the correctness of an 
atom newly added to a tentative model. The actual 
decision whether the model at hand (be it partial or 
complete) is correct or incorrect rests upon a com- 
parison between the actual R2 value and its expected 
value. A statistical approach to the latter is needed, 
because knowledge of coordinates is obviously not 
available at that stage. The best way to apply R2 is to 
implement it into a statistical decision process. In order 
to do so, either the probability density function P(R 2) 
itself has to be known, or the moments necessary to 
reproduce the properties of P(R2). The latter approach 
is taken in this paper. For definitions and in-depth 
discussions of the statistical terminology we refer to 
standard texts (e.g. Lindgren, 1976; Neuts, 1973; 
Rohatgi, 1976). 

Up to now two complementary procedures are 
followed to evaluate the moments of P(R2): 

(i) In the Patterson approach R 2 is defined over a 
vector space (Lenstra, 1974; 1979) as 

Rz=-- f (Po-Pc)Edv/ f PZodv (1.1) 
/) D 

in which Po and Pc represent the observed and 
calculated Patterson maps, while v stands for the volume 
of one unit cell. A Patterson map is then regarded as a 
weighted set of c~ functions representing vectors 
randomly positioned in the unit cell of the Patterson 
map. 

If all atoms are placed correctly, vectors in Po and Pc 
coincide and contribute to the terms in PoPe, whereas 
they do not for incorrectly placed atoms. Evaluation of 
R E thus amounts to a counting of vectors. This point of 
departure, however, is only valid if the data set used to 
calculate the Patterson maps is infinite, thus enforcing 
from the start a severe limitation on the theory. We will 
show that this jeopardizes further developments. 

(ii) In the more common statistical approach R E is 
defined in reciprocal space as 

2 2 2  4 R E ((EoZ-r/ Ec) >./(Eo> ". (1.2) 

The angular brackets represent an averaging over the 
actual set of structure factors, H -= (h,k,1). We define r/2 
as the fraction of the scattering power of the model 
relative to the total structure: 

r/2= r/eZ/~. (1.3) 

For an equal-atom structure 

rl 2 = n/N, (1.4) 

in which n and N represent the number of atoms in 
model and observed structures, respectively. E o and E c 
are the moduli of the structure factors of, respectively, 
the total structure and a model. The normalized 
structure factors are defined as 

N 

Eo -- Eo(H) = N-'/2 ~, exp(-2zciHrs). (1.5) 
j = l  
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An a priori  value, which is useful as well as feasible, is 
the mean value of R E averaged over all models, (R2), , ,  
where r c is defined as 

r c -  {r c} = {rf, j =  1 , . . . ,n} .  (1.6) 

Should one want to make statements about R 2 with 
more general validity, i.e. irrespective of any structure, 
one needs to have knowledge about ((R2)r~)r o. In other 
words, an extra averaging over all structures is 
necessary. To derive these quantities from (1.2) 
investigators have always tacitly replaced ( )n by ( )r. 
This leads to 

and 

( ( R 2 ) r ~ ) r o = ( R 2 ) r  ~ (1.7) 

( R 2 ) r  c= {(E4)rO + rl4(E4)r~ 

2 2 2 - -2r  I (EoEc)re ,r  o } / {(g4o)ro}, ( 1 . 8 )  

The necessary intensity moments are then obtained 
from an intensity distribution (Wilson, 1949; 
Srinivasan & Parthasarathy,  1976) or evaluated by 
averaging the space-group-dependent structure-factor 
equations with respect to r ° and r c (Wilson, 1950a,b, 
1969, 1978; Shmueli & Kaldor, 1981; Shmueli & 
Wilson, 1981). However, replacing ( )n by ( )r is only 
permitted if H represents an infinitely large data set. 
Therefore, the Patterson and statistical approaches 
have the same limiting condition. The immediate result 
is that every correct model of n atoms out of an N-atom 
structure gives the same R 2 value and thus the 
corresponding P ( R  z) is a 6 function, i.e. a(R 2) = 0. 

In practical X-ray crystallography one always deals 
with finite data sets. Replacement of ( )n by ( )r is thus 
no longer an identity operation but an approximation. 
Consequently, the result of (1.8) is only an approxi- 
mation of the quantities (R2)rC and ((R2)rc)ro we are 
interested in. Use of them in the decision process will 
reduce the chances for correct decisions when handling 
small data sets. More important, however, is that one 
immediately observes in practice that various correct 
n-atom models for one N-atom structure give rise to 
different R 2 values. Thus o'(R2) = 0 is a very bad 
estimate for the true spread in R 2. We conclude that the 
present formalisms are inadequate to obtain realistic 
information on P ( R  2). In the next sections a new theory 
is developed which will give better estimates of (R2)rc 

and allows the calculation of realistic higher moments 
o fR 2 and the residuals in general. 

2. New theory 

Starting from the general definition of R 2 

R 2 - ~, (E2o - 02 E2c)2/y E4o, (2.1) 
H H 

where H may be any subset of points in reciprocal 
space, we are faced with the problem to construct a 

probability space which probability measure allows an 
intelligent guess of R E. Defining a probability space 
[,W,P(R2)], we can take as sample s p a c e . P  the set of 
all real numbers. Recognizing that R 2 is a function of 
structure factors, which themselves are functions of the 
fractional coordinates, it is easily seen that in our 
context the natural primary variables for R 2 are 
coordinates and that the logical choice is to define R 2 
over an underlying probability space [$?,P(r)] based on 
these coordinates. The concrete choice of this space 
depends of course on whether the model is correct or 
incorrect. Instead of altering the probability space for 
each particular structure and for each change in the set 
of structure factors used, we prefer to use the concept 
of conditional probabilities. In doing so the original 
probability space can be kept. The sample space ~ can 
be taken as an N-fold Cartesian product of the unit 
cube, [0,1] 3 , that is we consider structures containing 
N-point atoms with fractional coordinates between 0 
and 1. The probability measure P(r) connected with the 
set of coordinates is easily defined when we consider 
the atoms randomly positioned, meaning P(r) associ- 
ates an equal probability with all points in the direct 
unit cell. Using this framework, we may calculate P(R2) 
with standard statistical procedures. It will, however, be 
convenient to work with the sets of E values as 
intermediates between the coordinate space and the 
probability space of R 2, since this will allow us to use 
published results on intensity statistics. The observed 
intensities, which form a set of a priori  fixed param- 
eters, will form the set of conditions under which the 
appropriate set of stochastic variables, the set of 
structure factors belonging to the model, must be 
handled. The way in which these conditional prob- 
abilities are made explicit will then allow us to express 
the correctness or incorrectness of a model. This brings 
us back to a point where standard statistical procedures 
allow the calculation of P ( R  2). 

For all practical purposes we take the probability 
associated with R 2 as Gaussian (Fig. 1), that is, we 

10. 
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Fig. 1. P(R2) for a model size of 6 out of 11 atoms. For details of 
the calculation see § 3.3. 
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confine ourselves to the first two moments of R2, 
although the evaluation of higher moments presents no 
special problems. 

The first moment is obtained by simply rephrasing 
the definition (2.1) into 

Z (E~;go> E 2 2.° Eo(Ec,~o> 
H H 

(R2;go) = 1 + r/4 --2r/z , 
Z E~ E Eo 4 
H H 

(2.2) 

where go is the subset of all possible reflections actually 
used in the calculations. The averaging is done over the 
coordinates of the model unless stated otherwise. The 
second moment about the mean is given by 

o '2(RE;go)  = < R 2 ; g o >  - -  <RE;go>  2. (2.3) 

After substitution and sorting we obtain 

a2(R2;go) = [E r/8((Ec8;~o> - <Ec4; go> 2) 
t , ,  

+ Z Z rlS[(E4(H)E4(K);go> 
H~K 

- (E4(H);go)(E4c(K);go)] 

H 

- <E~;go><E2;go)l - ~, ~, 4~6 E2(H) 
H~sK 

x [(E4(H)E2(K);go) 

- (E4c(H);go)(E2(K);go)] 

"~-Z 4 4 4. 4q Eo[ (E~,go) - (E2;go) 21 
H 

+ Y Y 4r/4 Eo4(H)[<E2(H) E2(K);go> 
H ~ K  

(2.4) 

Note that (a;b> means the average of a under the 
condition that b has occurred. Equations (2.2) and 
(2.4) are generally valid for all space groups and all 
models including completely correct as well as com- 
pletely incorrect models. The only difference between 
correct and incorrect models is the way in which the 
conditional relation towards go is formulated. This 
relation and this relation alone modifies P(R2) and its 
moments. With (2.2) and (2.4) the problem of the 
moments of R 2 is reduced to finding the moments of the 
intensity distributions P(Ee;~'o) and P[Ec(H) Ec(K); 
go]. For clarity and brevity we confine ourselves 

in this paper to two extreme cases in space group 
P1 only: (i) completely incorrect models and (ii) 
completely correct models. The extreme cases in Pi ,  as 
well as cases in P1 and P1 containing a mixture of 
correct and incorrect atoms, will be dealt with in 
subsequent papers in this series. Also, small positional 
errors in otherwise correctly placed atoms and random 
errors in the measured E values will be ignored for the 
time being. 

2.1. Incorrect models 

The intensity moments for incorrect models can be 
derived realizing that no correlation exists between 
observed and calculated structure amplitudes. Thus, 

(E~;go)=(E~')  (2.1.1) 

and 

(E~'(H)E~(K);go) = (E'~(H)Eem(K)>. (2.1.2) 

This condition, in combination with our original sample 
space ~, allows one to evaluate (E~), (2.1.1), using one 
of the intensity distributions available in the literature. 
For example, one can use the asymptotic distribution of 
Wilson (1949), provided the model contains a sufficien- 
tly large number of atoms: 

P(Ec) = 2Ec exp(--E2). (2.1.3) 

Although Wilson's original derivation employs an 
averaging over reflections and not over coordinates, 
Karle & Hauptman, 1953; Hauptman & Karle, 1953, 
confirmed that (2.1.3) conforms with the consequences 
of our choice of sample space. For most practical 
purposes Wilson's distribution gives sufficiently accu- 
rate results also for models containing a finite number 
of atoms (see § 3 Experimental verification). The mo- 
ments of (2.1.3) are given by (Shmueli, 1982) 

(E2") -- n! for n = 0, 1, 2, 3, .... (2.1.4) 

Next, we turn to the evaluation of the moments given 
in (2.1.2). This is a more complicated problem since 
there exists correlation between some reciprocal-lattice 
points. Direct methods (e.g. Klug, 1958; Giacovazzo, 
1980) provide us with arguments that this correlation is 
of minor importance to our results. Firstly, a non-zero 
correlation is only to be expected in P1 for reflections 
with indices that are multiples of one another. Second- 
ly, the influence of correlation on the intensity moments 
is inversely proportional to some power of n (number 
of atoms in the model) and, hence, will decrease as the 
size of the model increases. For the majority of non- 
correlated reflections in the set, 

(E~(H)Em(K)> = <E~(H))(EY(K)) (2.1.5) 

holds, and the terms containing summations running 
over two sets of reciprocal vectors cancel out two by 
two. For the relatively few correlated reflections the 
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contributions of the double summations can be shown 
to be negligible (see § 3 Experimental verification). 
Thus the results of aZ(R2) are hardly affected by 
ignoring the existence of any correlation between lattice 
points in the set used. 

Substitution of the intensity moments (2.1.4) into 
(2.2) gives 

(R2;g'o) = {~u (E4°-- 2~  ezo 

and into (2.4) yields 

a2(R2;g°) = t t~(4r/4 E4°- 16r/6 E°z 

t 

+ 
(2.1.7) 

2.2. Correct models 

To derive the intensity moments for correct models 
the correlation between Ec and the reflections in ~o has 
to be taken explicitly into account. Unfortunately, the 

E n • required moments ( c , g ' o )  are too complicated to 
handle and will be replaced by (Eg;Eo). That is, under 
the constraint of a set of E o values is replaced by under 
the constraint of one E o value. Of course, the latter is a 
necessary component of the former, but the question is: 
will it be a sufficient condition? The consequences of 
the approximation can be far reaching, because the 
correctness of a model is now defined at the level of a 
single reflection. A careful consideration of our 
conception of correctness is thus required. Suppose we 
have a correct model containing n atoms. Evidently, 
many sets of 3(N - n) coordinates, which complete the 
3n coordinates, may be found in the sample space .(2, 
which, together with the coordinates of the model, will 
yield E o. These sets definitely include the ultimately 
correct combination. However, all others which ought 
to be regarded as incorrect as far as the real structure is 
concerned are also incorporated in the final results. 
This might leave us empty handed, and in fact we are 
convinced that this problem is lethal if we stop at the 
level of a single reflection. However, the effect on R2 
will be limited, because in the enumeration one adds up, 
and many reflections contribute to the final result. At 
the level of a single reflection many models must be 
called acceptable, including the subset we would 
normally call correct. In the summation over a large 
number of reflections the latter subset becomes domi- 
nant, because it is always present in each group of the 
so-called acceptable models offered to us by each single 
reflection. Comparison of the theoretical results with 
the outcome of experiments has to demonstrate the 
correctness of our logic at this point. As we did with 
incorrect models we disregard correlation between 
reciprocal-lattice points. That is, we suppress again the 
summations running over two indices in (2.4). 

From here on the technical derivation of P(Ec;E o) is 
straight-forward. For incomplete models with sufficient- 
ly large rest structures (in our case of size N - n), 
Srinivasan & Parthasarathy (1976) have given the 
conditional probability function P(Eo;E ~) as 

P(Eo;E~) - - - 2 E °  r12° exp l -  r/°2 E°2 + r/~ E~ 

2 rlo rl~ Eo E~ 
x I o - i - -  ~ ' (2.2.1) 

r /o-  r/~ 

where Io(x ) is a modified Bessel function of the first 
kind and order zero. In order to obtain the required 
distribution we need to interchange E o and E c in (2.2.1) 
using the theorem of Bayes. Thus, 

P(E~;Eo) = P(Eo;E~) P(E~)/P(Eo). (2.2.2) 

As marginal distributions P(Eo) and P(E~) we use 
asymptotical distributions of Wilson, (2.1.3). Con- 
sequently, the rest structure, ( N -  n), the original 
model n, and thus by definition the total structure N, all 
have to contain a sufficiently large number of atoms. 
We obtain now 

P(Ec;Eo)- tl2o2ECrl-----~2°- rlzc exp{-  rlZ°EZc+rl2cEZ°}rlZo- rl~ 

x I o -2--  ~ - . (2.2.3) 

The moments of this distribution are 

2n. n! r/°2- r/ez ,F, n;1; r/~- E° 
(Ee 'Eo) = 2 2 2 ' 

~o rio- ~ ]  
(2.2.4) 

where ~F~(a;c;x) represents a confluent hypergeo- 
metric function. The derivation of (2.2.4) is given in 
Appendix A. Introduction of these moments into (2.2) 
gives 

(Rz;Zo) = {n ~Eo4(q s -  2 ¢  + 1) 

+ Y Eo2(4q 6 -  2r/2) (1 - ,2) 
H 

+ n~ 2 ¢ ( 1 -  r/2)2}/~n Eo 4 (2.2.5) 

and substitution into (2.4) yields 
/ 

e2(Rz;Yo ) =  {n~ Eo6(gr/~4- 16r/~0 + 8r/6)(1 - r/2) 

+ Z Eo4(52r/'2- 4 8 ~  + 4r/4)(1 - r/z) 2 
H 

+ ~ E2(80r/1°- 16r/6)(1 -- r/2) 3 
H 

/ E . (2 .2 .6 )  
H 
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2.3. Moments o f  R7 

A completely analogous analysis can be given for the 
normalized residual function R~, being defined as 

2 2 4 (2.3.1) R~ = ~ (E2o--Ec) /Z Eo. 
H H 

For incorrect models we obtain 

(R'~;g'o) = Y (E4o - 2E~o + 2)/Y Eo 4 (2.3.2) 
H H 

For correct models one obtains 

(R~;go) = {u ~ Eo4(¢- 2r/2 + 1) 

+ Z Eoe(4r/2- 2) ( 1 -  r/21 
H 

+ ~u 2(1-- /12) 2}/Z. Eo 4 (2.3.4) 

and 

a2(R~;~eo) = (u ~ Eo6(8¢ - 16¢ + 8q2)(I - r/2) 

+ • E o 4 ( 5 2 ¢ -  48r/2 + 4)(1 -- r/2) 2 
H 

+ Y. Eo2(80r/2- 16)(1 - r/2) ~ 
H 

+ y 2 0 ( l - r ~ ) ' /  E 
H 

3. Experimental verifleatlon 

(2.3.5) 

In the development of the theory we introduced a 
number of approximations. So a careful verification is 
in order. An ideal way of judging how the approxi- 
mations affect the final formulas is to compare the 
numbers they produce with numbers obtained from a 
Monte Carlo simulation of the same problem. A Monte 
Carlo procedure is by its nature an ab initio method, 
since only the definition of R 2, the basic ideas of the 
theory and the definitions of correct and incorrect 
models are used. That is to say that we will use as 
observed structure a simulated structure with randomly 
placed atoms. Two test structures were constructed in 
P1 with a unit cell of 5 x 5 x 10 A. The first contains 
ten equal atoms and is represented by the E o values of 
70 reflections in the range 0 < 0 < 10 °, denoted as data 
set (10,70). The second contains 100 atoms and is 
represented similarly by data set (100,70). The choice 
of the 0 range and the size of the unit cell may seem 
peculiar at first sight. One has to remember, however, 

that the averages are taken over {3} [(1.6)], distrib- 
uted evenly in the cell. The averaging is not performed 
over H. Consequently, in this homogeneous field of 
fractional coordinates, the quantity 2nHr i covers the 
circle completely and evenly. Therefore, the actual 0 
range and cell size are immaterial, the data are given 
for future reference. 

3.1. Incorrect models o f  a simulated structure 

We selected data set (10,70) for the observed 
structure because if the theory fits to this data set it will 
certainly fit to sets containing larger numbers of atoms 
and reflections. The distribution P(Eo) of the set 
showed a non-centric character. Then 12 000 indepen- 
dent, unrelated (incorrect) coordinate sets were 
generated for each model containing n (n < 10) atoms. 
The corresponding R 2 values were calculated from 
(2.1), leading to 

(R2(exp)>= ~ R2(exp)/12000 (3.1.1) 
12000 

and to 

tr2[R2(exp)] = (R22(exp)> - (g2(exp)> 2. (3.1.2) 

Averages and spread of R2 are given in Table 1, column 
1. They are compared (Table 1, column 2) with values 
calculated from (2.1.6) and (2.1.7). From the point of 
view of an experimental crystallographer the agree- 
ment between theory and experiment is very satis- 
factory, as it will serve his needs in practice. 

For the theoretician, however, it is worthwhile to 
pinpoint the reasons for the small discrepancies. The 
most dominant factor in these differences was traced to 

Table 1. Comparison for  incorrect models between 
(R2(exp)), tr2(R2) and theoretical values, obtained at 

various levels of  approximation 

n <R2(exp) ) (R2( t l )>  <R2(t2)> ((R2>rC>rO 

0 1.0000 1.0000 1.0000 1.0000 
1 0.9062 0.9106 0.9062 0.910 
2 0.8301 0.8389 0.8300 0.840 
3 0.7716 0.7849 0.7716 0.790 
4 0.7308 0.7486 0.7309 0.760 
5 0.7077 0.7300 0.7079 0.750 
6 0.7023 0-7292 0-7026 0.760 
7 0.7146 0.7460 0.7150 0.790 
8 0.7448 0.7806 0.7452 0.840 
9 0. 7922 0.8329 0. 7931 0.9 I0 

10 0.8580 0.9029 0.8586 1.000 

tr2(exp) tr2(tl) 32(t2) (a2>r o 

0 0.0000 0.0000 0.0000 0.0000 
1 0.0000 0.0002 0.0000 0.0002 
2 0.0004 0.0007 0.0004 0.0008 
3 0.0010 0.0014 0.0010 0.0016 
4 0.0018 0.0023 0.0018 0.0027 
5 0-0027 0-0036 0-0027 0.0045 
6 0.0040 0.0056 0.0040 0.0072 
7 0.0060 0.0088 0.0061 0.0116 
8 0.0093 0.0137 0.0092 0.0183 
9 0.0143 0.0210 0.0142 0.0284 

10 0.0218 0.0316 0.0216 0.0429 
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Table 2. Values of (E~(H)E~(K)>r~ and (E~>ro for 
ten atoms, H(1,1,1) and K(2,2,2) 

(E~(H)E~(K)> 1.00225 
(E~(H)E~(K)) 1-90563 
(E~(H)E~(K)> 2-00385 
(E4e(H)E4e(K)) 3.97452 
(E~(H)E~(K)) 5.14338 
(E~(H)E~(K)) 5.93261 

(E~(H)> 1.00094 (EeZ(K)> 1.00059 
(Ec4(H)> 1.90852 (Ee4(K)) 1.90020 
(E~(H)) 5.18945 <E~(K)) 5.13349 
(ecs(/-/)> 17.8715 (Eta(K)) 17.5190 

the form used for the intensity distributions. A more 
accurate intensity distribution, in which the actual 
number of atoms is explicitly taken into account is, for 
instance, given by Srinivasan & Parthasarathy (1976). 
See Appendix B for the moments. When they are 
incorporated into the theory the values for the averaged 
value and spread are obtained as given in Table 1, 
column 3. The discrepancies are decreased in absolute 
value to less than 10 -3 in <R2> and to about 10 -4 in 
t72(R2). The next important reason for the remaining 
discrepancies is the convergence of the simulations. If 
values obtained after 2 000 000 trials are used instead 
of 12 000, one finds a perfect fit (differences less than 
10 -5) for the average R 2 value. This is to be expected, 
since in the calculations of (R2) for incorrect models 
no other approximations than the ones stated above 
were introduced. With respect to o 2, the differences are 
then less than 10 -4 . These last remaining differences 
must be caused by the oppression of the summations 
running over two indices (= neglect of correlation 
between lattice points). Indeed, when we incorporated 
the contributions of the latter summations we found 
that the last entry of Table 1, column 3 had changed 
from a2(R2) is 0.02164 into 0.02170, that is the differ- 
ence from experiment had become about 10 -s. 

For future developments it can be of interest to have 
some notions about the behaviour of the moments 
(E~(H) E~'(K)). We calculated such values for a series 
of reflection pairs, each pair averaged over 2 000 000 
independent ten-atom models. Some results are listed in 
Table 2, taking the pair H(1,1,1) and K(2,2,2) as an 
example. The calculations indicate that (i) the effect of 
correlation increases with increasing powers of n and 
m, (ii) if K = 2//, significant correlation effects show 
only if n >_ m, whereas if H = 2K they show only if 
m >_ n. Furthermore, the effect of correlation 
diminishes with increasing size of the model or 
structure. Note that even for the small ten-atom models 
the correlation effects prove to be small. 

3.2. Correct models of a simulated structure 

The observed structure is represented by the E o 
values of the data set (100,70). A number of atoms 
larger than in the incorrect case is chosen in order to be 
able to construct a sufficently large number of 
incomplete but correct models. This has the additional 
advantage that (2.2.3) can be more safely applied. In 
our opinion 100 atoms is a reasonable compromise 

Table 3. Comparison for correct models between 
experimental and theoretical values for <R2) and 

aE(R 2) 

n (R2(exp)) (Rz(th)) ((R2)¢)~o 

0 1.0000 1-0000 1-00 
25 0.7396 0.7394 0.75 
50 0.4999 0.5006 0.50 
75 0.2597 0.2613 0.25 

100 0.0000 0.0000 0.00 

n 0"2(exp) ex2(th) <a2>r o 

0 0.0000 0.0000 0.0000 
25 0.0021 0.0023 0-0052 
50 0.0052 0.0054 0-0079 
75 0.0031 0.0032 0-0061 

100 0.0000 0.0000 0.0000 

between the need for asymptotically large models and 
the wish to keep the computations within bounds. We 
restricted ourselves to 70 reflections to save computer 
time, and, more importantly, because if the theory 
holds sufficiently for this small data set it will certainly 
hold for larger sets. Thus, 60 000 different modes were 
generated each containing n (n < 100) correct atomic 
positions, randomly chosen out of the original 100 
atoms. It was secured that a particular atom occurred 
only once in a model. For each model an R2 value was 
calculated from (2.1) leading as before to (R2(exp)) 
and tr2[RE(exp)], listed in Table 3, column 1. We 
needed 60 000 trials to converge these numbers to the 
fourth decimal place. Theoretical values were cal- 
culated from (2.2.5) and (2.2.6), see Table 3, column 2. 
The discrepancies between theory and experiment are 
small, less than 10 -3 in (R2) and less than 2 x 10 -4 in 
O'2(R2), in spite of the unusual small data set. 

This clearly shows that the step in the theoretical 
development in which we replace (Ec;~o) by (En;Eo) 
does not lead to serious errors, even for relatively small 
numbers of reflections. Obviously, in practical 
situations, with 1000 or more reflections in the data set, 
the influence of this approximation will undoubtedly be 
less important than the use of the asymptotic intensity 
distribution, (2.3.3). 

3.3. Correct models of an actual molecule 

It may be argued that simulated experiments using 
virtually ideal random models are not a fair test of the 
basic ideas underlying the practicability of the theory. 
A real structure may exhibit non-random charac- 
teristics, for example owing to relations between atoms 
caused by a near equality of bond lengths and angles, 
or to packing effects. None of these special features is 
so far modelled into the theory. Comparison against a 
real structure will show how serious the omission of 
such features is in practice. 

As an example we took the structure of (1S,4S)- 
5-acetyl-3-oxo-2-oxa-5-azabicyclo[2.2.1]heptane 
(Lenstra, Petit & Geise, 1979). The compound, 
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C7HgNOa,crystallizes in space group P212121 with a = 
7.10, b = 9.20 and e = 11.17 ,&. The asymmetric part 
was taken as an equal-atom structure containing 11 
atoms in PI.  From the atomic coordinates we 
calculated 1047 E o values. We confined ourselves to 
testing only correct models because such models are 
the most interesting ones in practice as well as the most 
difficult ones to handle in theory. Each correct model 
of n atoms was constructed in its C~' 1 different settings. 
The corresponding minimum, maximum and average 
R 2 values are indicated in Fig. 2 as crosses. Theoretical 
values for the moments of R 2 were calculated as before 
from (2.2.5) and (2.2.6). By drawing lines at 3e[R2(th )] 
on either side of (R2(th)) and assuming P(R2) to be 
Gaussian, we have mapped out a 99.73% confidence 
area. The crosses fit perfectly well into this area. They 
do so despite the fact that in some instances the number 
of models is far from statistically large and therefore 
R2(average), Rz(minimum) and Rz(maximum) are 
rather crude estimators for (R2(exp)) and a[Rz(exp)], 
and despite the fact that the size of the models is small 
to use safely the asymptotical intensity distribution 
given by (2.2.3). 

We recall once more that the major difference 
between the present theory and previous approaches to 
predict estimates of R z is the implementation of the set 
of observed data as information about the structure 
looked for. In previous theoretical investigations, e.g. 
Srinivasan & Parthasarathy (1976), an a priori 
estimate of R2 could only be calculated if one assumed 
an infinite data set. This means, for instance, that there 
is only one average R 2 value independent of the actual 
data set, a phenomenon clearly contradicted by 
practical experience. This drawback is overcome in our 
present approach, in which the study of the behaviour of 
R 2 is based on the knowledge of the actual data set of 
the structure. We demonstrate this in Table 4, where 

R 2 

1.0 

0.9 

0B 

07 

0.6 

0.5 

0.z, 

0.3 

0.2 

0.1 

w , J , , , , , • i 

I 2 3 z, 5 6 7 8 9 l0 II n 

Fig. 2. Experimental  minimum, average and m a x i m u m  R 2 values 
for an actual structure of I1 atoms. The theoretical values are 
obtained from equations (2.2.5) and (2.2.6) assuming a Wilson 
distribution for the E o values. 

Table 4. Comparison of  observed and theoretical 
(R2) values, showing the influence of  the size of  the 

data set 

(R2(th)) is calculated from equation (2.2.5). The values for an 
oo data set are obtained from equation (4.1.5). 

0 5 0 5  10 ° 0 ~ 0 ~ 3 0  ° 
47 1045 oo 

reflections reflections reflections 
n (R2(exp)) (R2(th)) (R2(exp)) (R2(th)) (R2) 

1 0.9514 0.9413 0.9177 0.9099 0.9091 
2 0.8830 0.8666 0.8322 0.8199 0.8181 
3 0.7972 0.7782 0.7433 0.7298 0.7273 
4 0.6967 0.6789 0.6513 0.6393 0.6364 
5 0.5853 0.5719 0.5566 0.5485 0.5455 
6 0.4676 0.4608 0.4600 0.4572 0.4545 
7 0.3489 0.3495 0.3628 0.3656 0.3636 
8 0.2354 0.2427 0.2662 0.2739 0.2727 
9 0.1341 0.1452 0.1722 0.1821 0.1818 

10 0.0527 0.0624 0.0826 0.0907 0.0909 
11 0.0000 0.0000 0.0000 0.0000 0.0000 

average values of R z are listed using different numbers 
of reflections in the data set. The size of the data set is 
governed by arbitrarily chosen maximum 0 values. As 
an example, we took the azabicyclo[2.2.1]heptane 
derivatives in the treatment given above. 

The numbers (Table 4) clearly show that variation in 
the average R 2 value as a function of the size of the 
data set is correctly followed by the variation in the 
theoretical results and that the latter values are 
superior, particularly for small data sets, to estimates of 
R2 based on the assumption of an infinite data set. This 
also suffices to show that the non-randomness of a 
structure can be taken into account in our new 
approach. For it is this non-randomness which, when 
the 8 limit is altered, induces changes in the moments 
(E~'(H))n and thus in the moments of R 2. Although the 
0 limit does not appear explicitly as a parameter in the 
present theory, its effects are taken care of simply by 
using the observed intensities. In this context it is of 
interest to note that (2.2.3) is strictly speaking a 
function of the point in reciprocal space chosen, even 
though this does not show in the actual form of the 
formula. 

4. Discussion 

4.1. Generalization of  the moments of  R 2 

Because (2.1.6-7) and (2.2.5-6) contain explicitly 
the summations over the set of observed reflections, 
they give (R2) and a(R2) specific for an actual 
structure. It is, however, sometimes of interest to 
generalize the present results and to have formulas at 
one's disposal independent of the structure at hand. As 
stated before this requires knowledge of ((R2)rC)rO and 
(a2(R2))r,,. An exact evaluation of these quantities is 
unfortunately too complex, because it involves averages 
of the type 

(E~(H)/7. E'~(H))rO. (4.1.1) 
H 
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If, however, we are satisfied with an approach in which 
the end justifies the means, (2.1.6-7) and (2.2.5-6) can 
easily be rewritten to give approximations for the 
quantities stated above. This is done by replacing 

~, E'~ =,~"(E~) n by ~ E~ = ~(E~')rO,  (4.1.2) 
H H 

in which o~F is the number of reflections. The operation 
is strictly speaking only admissable in the limit of an 
infinite data set. Substitution of the Wilson distribution 
(2.1.3) results in the following formulas, for incorrect 
models: 

((R2)rC)e, _~ r/4 - rf + 1 (4.1.3) 

(trE(RE))r o ~- ( 5 ~  - 4r/6 + 2 q 4 ) / ~  ", (4.1.4) 

while for correct models: 

((R2)rc)ro ~_ 1 -  r/2 (4.1.5) 

(t72(R2))rO~ {(48/714- 96r/1° + 48q")(1 - /12)  

+ (104r/12- 96r/s + 8r/4)(1 - r/2) 2 

+ (8Or/~°- 16~)(1  - r/2) a 

+ 2 0 ~ ( 1 -  r/E)4}/4,~f. (4.1.6) 

It is of importance to note that (4.1.3) and (4.1.5) give 
the first moments of R E identical to those given, for 
instance, by Petit, Lenstra & Van Loock (1981). The 
approach of these authors thus leads to a limiting case 
of the present theory. The last columns of Tables 3 and 
4 give the results of (4.1.3-6). They demonstrate that 
conclusions about the path of (RE) and tT(R2) drawn 
from the three particular structure examples can be 
qualitatively transferred to the average structure. On 
the other hand, the average structure qualitatively 
predicts the correct order of magnitude of (R2)  and 
o(R2) for a particular structure. Obviously one should 
not expect such estimates to be highly accurate. 

4.2. Behaviour in the limit of  an infinite data set 

In the limit of an infinite data set our results must 
converge to those of previous investigations: (i) for a 
chosen size of the model (R2)  is a constant and (ii) 
o2(R2) = 0. This is easily seen for (R2),  (4.1.3, 5). 
Regarding o2(R2), (2.4), one distinguishes two types of 
summations, those over one set of indices and those 
over two such sets. Terms of the first type individually 
converge to zero, since the nominators contain ~ and 
the denominators ~7g,2, see (4.1.4, 6). We have seen that 
summations of the second type cancel two by two, 
unless there exists a relation between the indices of the 
reflection pairs. In other words, the running indices of 
the summations H and K are no longer independent 
and the remnants of the double summations collapse to 
single summations. Their number of terms is now of the 
same order as the number of terms in the summations 

running over one index. Thus the contributions of 
correlated reflections will in absolute value go to zero at 
the same rate as the other terms do. 

4.3. Comparison o f  R 2 with R~ 

Parthasarathi & Parthasarathy (1975) have stated 
that R~ might be a better indicator function for small 
models than RE, mainly because the difference R~(in- 
correct) - R~(correct) is larger than the corresponding 

Table 5. Comparison of  the estimated resolving power 
between correct and incorrect models for  R 2 and R~ 

n/N denotes the fraction of the known part of the model and 
,,~w the number of reflections. 

./U S(R9 V/-W S(R9 X/W 
0.1 0.012 0.010 
0.2 0-025 0-021 
0.3 0.040 0.033 
0.4 0-056 0.046 
0.5 0.075 0.062 
0.6 0-096 0-080 
0.7 0-119 0-100 
0.8 0.143 0.125 
0.9 0.168 0-155 
1-0 0.192 0.192 

< R ~ R r~incotr 
1.0 Z 

0.S 

0.0 . . . . . . .  ~ R2~cOrr 

0.0 0,5 1,0 t/2 
Fig. 3. Average values of the residuals for correct and incorrect 

models. 

201 

1.0. 

R2 ~incorr 

/o= " , , ,  / R{"" 

0.0 
00 0.5 tO q2 

Fig. 4. Average o values of the residual values. 



W. K. L. VAN HAVERE AND A. T. H. LENSTRA 561 

difference in R 2 values. It is, however, evident that these r°° 
quantities are bad estimators of the power of the | J ~ ( a t ) e x p ( - p 2 t 2 ) t U - l d t  

d residuals for automation procedures, because no 
information about the higher moments is used. A better 
estimator of the resolving power is given by S defined 
a s  

<n 2(incorrect)) -- ( R 2(correct)) 
S = . (4.3.1) 

3{a[RE(incorrect)] + a[R2(correct)]} 

F(½v+ ½~)(~p)~ 

2p" F(v + 1) 
1 F,  V+½fl;V+ 1 ; -  

R e ( v + ~ t ) > 0 ,  a c C ,  Re(p  2 ) > 0 ,  (A.2) 

To check their statement in a way independent of a 
particular structure one must use the moments obtained 
from (4.1.3-6) as parameters in S(R2) and the 
corresponding parameters in S(R'I). The latter are 
easily obtained from (2.2.3-5) by replacing, as in the 
previous paragraph, ~ n  Eo n by ~'~(E~). Noting that S 
is proportional to the square root of the number of 
reflections, we have tabulated (Table 5) the values of 
S ~  for the two indices in space group P1. The 
numbers show that there is no significant difference in 
resolving power between R 2 and R~. This is not an 
unexpected result since the definition of R~ differs only 
in the omission of the trivial weighting factor r/2 from 
the definition of R 2. Since in our opinion such a scale 
factor cannot influence the resolving power, it cannot 
be concluded from the numbers listed in Table 5 that R 2 
is a better discriminator function than R~. 

As a final remark, one can conclude that a faithful 
indicator of the resolving power should somehow 
contain third and higher moments of the residual 
functions. 

Figs. 3 and 4 show the path of ( ( R 2 ) r ~ ) r o  , 

((R~)rc)r~, (a(R2)),~ and (a(R~)),~, respectively. 
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together with the identity (B ateman, 1953, II) 

I~(z) = exp(- i½vn)J ,[z  exp(in/2)] 

- n <  arg (z) < n/2 (A.3) 

and Kummer's first transformation (Bateman, 1953, I): 

,F,(a;b;x)  = e ~ ~F~(b - a; b; -x ) ,  (A.4) 

we can write equation (A. 1) as 

 cEo ( A . 5 )  x ,F, -P" 1; 2 2 " 

2' ~7o - r/c 

For the even moments # = 2n holds: 

2,,. 1Fl n; 1; 2 2 " 
( E  c ,Eo) = n] rio ~lc qcEo 

,lo - / 
(A.6) 

As can be seen from the definition of ,F, (Bateman, 
1953, I), 

a x a(a + 1) x 2 
,F , (a ;b;x ) - -  1 + - - - +  + . . . ,  (A.7) 

b 1! b (b+  1) 2! 
the moments reduce in our case to an nth-degree 
polynomial in x, because a is a negative integer. For 
instance, the second moment can be written as 

(E2;Eo) = t] 2 E 2 + ( I -  r]2). (A.8) 

A P P E N D I X  A 

The moments of (2.2.3) can be obtained as 

(Ec~;Eo) - 2r/°2 exp ( -  r/2E22 2t 
- 

r/o Ec 
x ~ Eg + , exp r/o2 _ r/c2 ] 

0 

0- - { - -2S  d E c "  (A.1) 

Using a generalization of Weber's first exponential 
integral (Bateman, 1953, II): 

A P P E N D I X  B 

A number of authors have derived intensity distri- 
butions and intensity moments (Srinivasan & 
Parthasarathy, 1976; Shmueli & Kaldor, 1981; 
Shmueli & Wilson, 1981; Karle & Hauptman, 1953; 
Hauptman & Karle, 1953) whose domain of validity 
stretches beyond the one obtained by Wilson (1949). 
The latter distribution is based on the assumption of an 
asymptotically large number of atoms. For space group 
P1 the moments valid for a small number of atoms in 
the model take the form: 

(E~) = 1 

<E~) = 2 -  1/n 

<E6) = 6 -- 9/n + 4/n 2 

(E~) = 2 4 -  72/n + 82/n 2 -  33/n 3. ( B . 1 )  
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Abstract 

With the help of conditional probabilities formulas are 
derived for the first and second moment of R2 as a 
function of the size of the model. The formulas are valid 
in the space group P1 for two extreme cases, viz 
completely correct and completely incorrect models. 
Incorporation of the observed intensities enables one to 
obtain accurate a priori estimates of (R2> and a(R2). 
The theory agrees very well with simulated 
experiments. 

I. Introduction 

In automated structure determinations of single 
crystals, one may use the mathematical residual 
function R z to discriminate between correct and 
incorrect models. The applicability of R 2 as a dis- 
criminator function increases sharply if one has at one's 
disposal an a priori evaluation of its average value and 
spread. That is to say, in order to be able to use 
statistical decision methods in an automated analysis 
one needs to know for the crystallographic situation at 
hand either the probability distribution of the residual 
Rz or the moments of this distribution. 

0108-7673/83/040562-04501.50 

Until recently, the assumption of an infinite data set 
allowed only the prediction of the first moment (mean 
value) but precluded the evaluation of the higher 
moments. The break-through came with the intro- 
duction of the calculus of conditional probability. In 
part I (Van Havere & Lenstra, 1983) we laid down the 
general principles of the new theory and derived 
expressions for the first and second moments of the 
probability density function of the residual R2 for 
completely correct and completely incorrect structure 
models in space group P 1. The results for P 1 may serve 
as a model for all primitive non-centrosymmetric space 
groups. In this paper we will derive similar expressions 
tor space group P 1, which may serve as a parent for all 
primitive centrosymmetric space groups. 

2. Moments o f R  2 

Throughout this work E o will refer to the observed 
magnitude of the normalized structure factor belonging 
to a structure containing N atoms in the asymmetric 
unit. Likewise E c will refer to the calculated magnitude 
of an E value of a model containing n atoms in the 
asymmetric unit. The definition of R 2 is 

R 2 - ~. (E2o- tf  E2c)2/~. E 4 (2.1) 
H H 
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